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1 R2CAT Framework

1.1 Overview

The Rice ROSE Compositional Analysis and Transformation Framework (R2CAT) syn-
thesizes a series of program analysis and transformation components into a unified
framework, and provides an interface to facilitate exchanging information among those
components.

The framework is being built upon the ROSE compiler [7] which is a mature source-
to-source compilation system. Some of teh distinguishing characteristics of R2CAT
include:

– Sparse program analyses based on Static Single Assignment (SSA) form for scalars,
arrays, and pointer data structures

– High level program analysis, i.e. based on an an Abstract Syntax Tree (AST) level
program representation;

– Transformations based on incremental re-analysis.

Figure 1 gives a high level view of R2CAT. R2CAT works with the ROSE Sage
Intermediate Representation (Sage IR), which is an AST-based IR. The ROSE front end
parses the input programming language (e.g. C/C++) into Sage IR. The ROSE middle
end constructs per-procedure Control Flow Graphs (CFGs) and the Call Graph (CG)
based on the Sage IR. R2CAT interacts with ROSE to perform dataflow analyses and
transformations.

Figure 2 presents the internal workflow of R2CAT, which consists of a sequence
of analysis and transformation passes. A central data structure for R2CAT is the Heap
SSA form program representation, which is constructed by a Heap SSA builder, and
reconstructed on demand as transformations are applied.

1.2 Heap SSA form

As shown in Figure 2, R2CAT supports Heap SSA-based sparse program analysis. Heap
SSA is an extension of Array SSA [4] that generalizes it to support all forms of heap
read/write operations, e.g. structure accesses, array accesses, and pointer dereferences.

Heap SSA represents the heap space as an array, introducing a dphi function to trace
each heap write operation and building the def/use chains for all heap read/write oper-
ations. The Heap SSA construction algorithm extends the scalar SSA [2] construction
process. For more detail, see [4, 3] and the overview in Section 2.
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Fig. 1: Interaction between ROSE and R2CAT.
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Fig. 2: Internal workflow of R2CAT.

1.3 Analysis

In R2CAT, the analysis passes perform dataflow analysis to identify the relevant values
for both scalar variables and heap cells (e.g., array elements, dereferenced pointers).
These analyses take advantage of the Heap SSA representation and perform a sparse
analysis that reduces the time and space complexity of the analysis process. Section 3
gives more detail about the relevant algorithms.

1.4 LLNL Compositional Framework

LLNL is building a generic compositional dataflow analysis framework within ROSE.
One goal is to incorporate R2CAT into the LLNL analysis framework, which is pre-
sented in Figure 3. It includes a dataflow analysis driver that maintains a chain of anal-
yses; a common query interface; a series of data structures to facilitate the input/output
of analyses. Each Part maintains a set of Abstract Objects (see details in Section 4.3).
An Abstract Object is a high level abstraction of the targets of dataflow analysis, and
can have one of two types:

– Abstract value object, e.g. the constant value of a given scalar variable or array
element;

– Abstract memory location, which represents scalar variables, array elements, point-
ers, and label aggregations.
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Fig. 3: LLNL Compositional Dataflow Framework.

By mapping the Sage IR (e.g. variable or expression) to its corresponding Abstract
Objects, client analyses can query the relevant value for any expression. For example,
constant propagation analysis can output a map of expressions and their corresponding
constant values. A successor analysis can query the constant value by giving the expres-
sion as input. In Section 4, we introduce a detailed account of the LLNL compositional
framework’s features and discuss how we have adopted the framework for R2CAT.

2 Heap SSA

As mentioned in the previous section, the foundation of R2CAT is the Heap SSA rep-
resentation. This section describes Heap SSS and how it works to facilitate analyses.

2.1 Running Example

To demonstrate the effectiveness of Heap SSA form, we employ a running example
to show how it enables constant analysis to identify constant values for heap cells. In
Figure 4, the C code has multiple pointer-dereferenced read/write operations through
pointer variables py3, pd1 and py1. Scalar SSA form is unable to capture the data flow
relationships among reads and writes of the dereferenced pointers, while Heap SSA
can.

Figure 5 shows the transformed Heap SSA code that adds dphi functions and re-
named “heap arrays”. In this example, we assume that all memory is represented by a
single heap array variable called MEM. A pointer value is modeled as an index in the
MEM array, and each pointer dereference represents a read/write access of an element
of the MEM array. After Heap SSA naming, we have a set of renamed MEM arrays of
the form MEMi, such that every static write of a dereferenced pointer is performed on a
distinct heap array thereby satisfying the static single assignment property. Heap SSA
form encodes heap-based def/use chains that enable program analyses to identify all
heap writes that could reach a given heap read operation. For example, the heap read
MEM2[pyi] in line S7 has a possible heap write at MEM1[py3] at line S1.

NOTE: an important design decision when implementing program analyses is to
determine how many heap arrays to use and what the relationships between heap ar-
rays should be. For example, when analyzing Java programs, it is possible to assign a
separate heap array for instances of a specific field since it is not possible for two dis-
tinct fields to be aliased with each other in Java. The situation can be more complicated
in C due to its pointer aliasing semantics. While the use of a single MEM heap array



i n t y3 ;
i n t ∗ py3 := &y3 ;
i n t d1 ;
i n t ∗ pd1 := &d1 ;
i n t ∗ p y i ;

S1 : . . . / / a s s i g n i n g v a l u e t o p y i
S2 : ∗py3 := 9 9 ;
S3 : i f C t h e n
S4 : ∗ pd1 = ∗ py3 ∗ 2 ;

e l s e
S5 : ∗ pd1 = ∗ p y i ∗ 2 ;

e n d i f
S6 : z := ∗pd1 ;

Fig. 4: Example code

will always yield sound and current analyses, the creation of additional heap arrays and
shadow variables for data accesses can lead to increased precision. For example, a sep-
arate heap array, STACK, can be created for all local variables (stack locations), and a
separate array, MALLOC can be created for all data allocated via malloc() calls.

The idea behind shadow variables is to model a single read/write operation in the
original program as reads/writes of multiple heap arrays. For example, if a read of y3
was added to Figure 5, it can be modeled as a direct read of the scalar y3 as well as a
read of MEM[y3]. Accesses to STACK and MALLOC heap arrays can also be added as
shadow variables.

2.2 Array SSA form

The idea of using the use/def information for heap variables to trace memory accesses
was based on Array SSA form [4], which targeted array based programs, i.e., only
supported array and index information. Array SSA introduced the dphi function that
annotates every heap write operation.

In [3], Fink, Knobe and Sarkar introduced the extended Array SSA from, including
two extensions:

1. introduce uphi functions that are used to trace the heap read operations;
2. model field accesses as accesses to heap arrays in strongly typed programming

languages such as Java.

2.3 Heap SSA form

In R2CAT, we generalize the Heap SSA form introduced in for Java to weakly typed
programming languages such as C. A global heap variable is introduced (i.e. MEM in
Figure 5) to represent the single heap array that covers all heap cells, including scalar,
array, pointer, label aggregations (i.e. struct/class field accesses). At this level, the MEM
array includes both stack and heap locations.



i n t y3 ;
i n t ∗ py3 := &y3 ;
i n t d1 ;
i n t ∗ pd1 := &d1 ;
i n t ∗ p y i ;

S1 : . . . / / a s s i g n i n g v a l u e t o p y i
S2 : MEM1[ py3 ] := 99
S3 : MEM2:= dph i (MEM1,MEM0)
S4 : i f C t h e n
S5 : MEM3[ pd1 ] := MEM2[ py3 ] ∗ 2
S6 : MEM4 := dph i (MEM3, MEM2)

e l s e
S7 : MEM5[ pd1 ] := MEM2[ p y i ] ∗ 2
S8 : MEM6 := dph i (MEM5, MEM2)

e n d i f
S9 : MEM7 := p h i (MEM4,MEM6)
S10 : z := MEM7[ pd1 ]

Fig. 5: Heap SSA code

The construction of Heap SSA form involves a simple extension to the procedure
for building scalar SSA form, and can be summarized as follows for a given C function:

1. Create a heap variable MEM;
2. For each heap read/write operation, add pseudo read/write for MEM;
3. For each heap write operation, add dphi function: MEM = dphi(MEM);
4. Invoke scalar SSA construction by considering the read/write operations for heap

variables and dphi functions; i.e., the dphi function is involved in the renaming
process: MEMi+1 = dphi(MEMi).

As with scalar SSA form, the implementation of Heap SSA form is represented as
look-aside information in the ROSE IR system; i.e., each Sage IR node (e.g. variable
node, or expression node such as array access or struct access) is mapped to its corre-
sponding memory objects and these memory objects are connected by the use/def chain
that is the composition of all of the dphi functions and their uses.

In the current implementation, we introduce a single heap variable MEM that guar-
antees correctness for weakly typed languages (i.e. C/C++). For a more precise analysis
(as mentioned earlier), we will introduce additional heap variables that distinguish dis-
tinct heap locations, such as array regions. We will also introduce variables to represent
other kinds of variables, such as local variables and stack variables.

3 Analyses

This section discusses the current state of R2CAT, including the analyses implemented,
and how they are composed.



3.1 Algorithm Selection

In its current stage, R2CAT includes three program analysis passes:

1. Value numbering;
2. Pointer analysis;
3. Constant analysis.

The corresponding algorithms are selected from well-known academic papers.

Value Numbering The implementation of the value numbering pass is based on the
Alpern-Wegman-Zadeck [1] SSA-based value numbering algorithm, which restricts its
attention to scalar SSA form. However, the output of this analysis can help improve the
precision of constant analysis of both scalars and heap arrays.

Pointer Analysis The pointer analysis implemented in R2CAT is based on the al-
gorithm introduced by Lhotak and Chung [6]. This pointer analysis leverages the ad-
vantages of scalar SSA form in supporting strong updates and providing precise flow-
sensitive points-to information. For the ”may point to” variables definition (i.e. multiple
potential pointer values), this algorithm uses the traditional flow-insensitive approach,
i.e. providing all possible pointer values. The output of this analysis can also help im-
prove the precision of constant analysis of heap arrays.

Constant Analysis The constant analysis is based on Wegman & Zadeck’s [8] sparse
condition constant analysis, applied to Heap SSA form [5]. We extended it to leverage
Heap SSA and support constant analysis for heap cells (e.g. array elements, struct fields
and dereferenced pointers).

3.2 Interaction between Analyses

All of these analyses interact with each other, i.e., one analysis can provide information
to another and improve its precision. The constant analysis for two given heap cells (e.g.
pointers or array elements) needs the value numbering or pointer analysis to identify the
must equal and must not equal relations. In the other direction, the constant analysis can
benefit both value numbering and pointer analysis by providing precise constant values
or branch condition elimination.

Because of these interactions, the analyses are performed in iterative fashion, as
shown in Figure 6.

3.3 Query Interface

All of these analyses provide query interfaces to the client, which can be either be a
transformation pass or a pass by a different analysis. The query interface takes two
input parameters: one is a Sage function node that denotes the current function for
query; another is a Sage Expression node that denotes the expression for querying its
corresponding lattice.
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Fig. 6: The composition of constant analysis, value numbering and pointer analysis in
R2CAT.

3.4 Composition

All three analyses can provide analysis output to clients. They can be composed into
a chain of passes (i.e. analyses or transformations passes) in arbitrary order, and each
pass can feed its output to its successor by providing the query interface.

As discussed in section 3.2, these analyses can also be applied iteratively for im-
proving the precision of analysis. Figure 6 presents an example workflow that demon-
strates how current analyses could work together within R2CAT. The three analyses are
combined into an analysis phase that invokes constant analysis, value numbering and
pointer analysis multiple times before the transformation pass.



4 Rice Compositional Analysis

The Rice compositional analysis framework is an extension of the LLNL compositional
analysis. The basic aim is to adapt R2CAT to the LLNL compositional analysis frame-
work as follows:

– Driver mechanism and interfaces;
– Support same data structures, i.e. abstract objects;
– Support input/output representation, i.e. lattice interface and expression to value

mapping;
– Query interface.

This section discusses the issues listed above.

4.1 LLNL Compositional Analysis Chain

As presented in Figure 3, the LLNL compositional analysis framework has a struc-
ture similar to R2CAT, which uses a chain-based compositional structure to drive all
analyses and transformations. To support the LLNL framework, we need to support the
following C++ interfaces for each analysis:

– ComposedAnalysis interface: interacts with the compositional chain;
– AbstractObject interface: maintains both value-based objects and memory loca-

tions.

4.2 Composed Analysis Interface

ComposedAnalysis is the base class of the analyses that will work off the LLNL compo-
sitional analysis chain (see Figure 7). It introduces the functions for maintaining the ex-
pressions’ lattices (e.g. Expr2Val function), the driver mechanism for intraprocedural
analysis (e.g. runAnalysis function and visit function), the context mapping of
function invocations (e.g. genInitState function and transferFunctionCall
function), and the interaction between the analysis and composer (e.g. getComposer
and setComposer functions).

Each analysis that implements ComposedAnalysis maintains a worklist-based con-
trol flow graph (CFG) traversal engine which performs either a forward or backward
traversal. An analysis must customize its own transfer function for lattice states. The
transfer function is applied at each control flow graph node.

In R2CAT, we are using the Heap SSA form-based forward traversal. It introduces
the same interface as the high level LLNL framework (i.e. exposing the runAnalysis
interface to the composer chain), but uses different internal implementations for ana-
lyzing the given input. The major difference is in the control flow graph traversals: the
LLNL framework uses a dense CFG traversal, while R2CAT uses a sparse traversal
based on def/use chains.
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Fig. 7: The class hierarchy for composed analysis.

Interaction between Analyses In the LLNL compositional analysis framework, lat-
tices are used to store analysis results. Each analysis provides the following query in-
terfaces (the class hierarchy for ComposedAnalysis is shown in Figure 7):

– Expr2Val: returns the value object for a given expression;
– Expr2MemLoc: returns the memory location for a given expression;
– Expr2CodeLoc: returns the code location (in source program) for a given ex-

pression 1.

Both value object and memory location are represented as an abstract object (see de-
tails in 4.3). Besides composing analysis results (see Figure 3), the LLNL framework
also provides standard lattice representations: finite lattice, infinite lattice and product
lattice.

There are three basic types of lattice in the LLNL framework: 1.) a finite lattice,
which represents the values corresponding to an expression or any given Sage node
(e.g. the constant values in constant analysis); 2.) an infinite lattice, which represents
the infinite possible set of values corresponding to an expression; 3.) a product lattice,
which represents all expressions’ lattice values for a given program point. For adop-
tion of the LLNL framework, we need to use these lattice classes to represent analysis
output. The value lattice is the subclass of ValueObject, i.e. it has to implement the
mayEqual and mustEqual functions (see Figure 8(a), which shows the lattice used in
LLNL’s constant propergation analysis, and see more detail in Section 4.3).

In R2CAT, we apply the same implementation, i.e. the lattice implements both the
finite lattice interface and the ValueObject interface (see Figure 8(b) that shows an
example for the lattice used in constant analysis).

1 We do not handle the code location in the current Rice analysis framework.
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Intra / Inter Procedural Analysis Each composed analysis in the compositional chain
is an intraprocedrual analysis, which is applied to a given input call graph. The LLNL
compositional analysis framework implements context insensitive interprocedural anal-
ysis in its dirver (see Figure 3), the driver invokes each analysis in the composer chain
through the call graph and applies these operations for each function in the call graph:

1. Mapping the initial states from the caller’s lattices;
2. intraprocedural analysis: invoking the composed analysis;
3. mapping the lattices back to the caller.

The 1st and 3rd ’mapping’ operations are controlled by the Sage IR map shared between
caller and callee. Since each IR node has its corresponding lattice, the lattice mapping
is based on an IR node mapping. The lattice objects involved in ’mapping’ operations
are product lattice objects that implement the function remapML (see Figure 9), which
performs the value mapping. The analysis writer can customize the mapping process by
subclassing the product lattice class and reimplementing the remapML function.

In R2CAT, we create new product lattices for the analyses (see Section 3): PTProductLattice,
which is for pointer analysis and performs points-to graph updates between the caller
and callee; VNProductLattice, which is for value numbering analysis and remaps
the value number between the caller and callee; and CAProductLattice, which is
for constant analysis, passes the constant values between caller and callee. The class
hierarchy is shown in Figure 9.

4.3 Abstract Object Interface

The key idea of using the abstract object interface (the AbstractObject class in
Figure 10) is to represent both value objects and memory location objects with the
same super class, since they share mayEqual and mustEqual functions. Analyses can
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customize their own abstract objects to represent different kinds of variables and ex-
pressions (e.g. scalar variable, array element), which require different implementations
of mayEqual and mustEqual functions.

Figure 10 presents the class hierarchy of the abstract objects defined in the LLNL
compositional dataflow framework. The root class is AbstractObject, which has two
subclasses: ValueObject is used to represent the value, e.g. a given variable’s value;
MemLocObject is used to represent a memory location, e.g. an array reference, or a
pointer. Five subclasses of MemLocObject for represent the five typical categories of
memory locations:

– Scalar: scalar variables;
– Function: function pointers;
– LabeledAggregation: the struct / class fields;
– Array: arrays;
– Pointer: pointers

These five types of memory location object have different definitions of mayEqual/mustEqual
functions, which must be implemented separately.

Figure 11 gives the class hierarchy of the R2CAT extension of abstract object
classes. The SSAMemLobObj directly subclasses from MemLocObject and maintains
a reference to Heap SSA for access to look-aside information (see Section 2). It also
introduces a basic implementation of mayEqual and mustEqual functions by checking
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Fig. 11: The class hierarchy of R2CAT’s SSA based abstract objects.

the given variable’s reaching definition in SSA form. R2CAT also maintains five types
of memory locations that are directly subclassed from LLNL memory locations: SSAS-
calar, SSAFunction, SSALabeledAggregation, SSAArray and SSAPointer.These mem-
ory location objects customize their own mayEqual and mustEqual functions.
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